Personality-based recommender systems: an overview

Maria Augusta S. N. Nunes (UFS)- gutanunes@gmail.com
Rong Hu (EPLF)- rong.hu@epfl.ch
Maria Augusta S. N. Nunes

Docteur en Informatique - Université Montpellier II - 2008

Professor at Universidade Federal de Sergipe - Brazil - from 2009

this presentation is being supported by the Brazilian government:
partly from Sergipe-FAP:

and Universidade Federal de Sergipe, head of Capacite project:
Rong Hu

Post-doctoral at Swiss Federal Institute of Technology, Lausanne (EPFL) - from 2012

This presentation is being supported by École Polytechnique Fédérale de Lausanne (EPFL)
Outline

• First part - basic theories and Knowledge towards to PBRS:
 • Contextualization of Affective computing at RecSys;
 • Human decision-making & computer decision making;
 • Personality theory;
 • Personality extraction;
 • Personality profile representation and standardization.

• Second part - Personality-based Recommender Systems:
RecSys slogan:

We are leaving the age of information and entering the age of recommendation.

Chris Anderson in The Long Tail
So what???

Are you sure about this?

....
Do you remember
How about the old times??
Dublin – September 11th, 1930

Good morning, Mrs. Johnson!
Imagine:

(even if the pharmacist doesn’t know you, could he offer you something adequate?)
just by looking at your physiological situation...
Could this information help?

physiological

psycho-affective
So...going back to the slogan…

Is recommendation something new?
How about computers?

Could computers effectively understand your psycho-affective, physiological data (subtle information)?

Then, could computers offer you something new?

Look at AMAZON, for instance...
Dear Customers,

In 2005, we launched a program called Amazon Prime. For just $79 a year, Prime members get unlimited Free Two-Day Shipping on a million different products. Prime was an outstanding offer and many people joined the program.

Today, seven years later, Prime is even better. You now get unlimited Free Two-Day Shipping on 15 million products. Prime also now gives you unlimited instant streaming of over 22,000 movies and TV episodes, as well as the Kindle Owners’ Lending Library, an exclusive service where Kindle owners can borrow from a library of over 180,000 books for free, with no due-dates. And despite all this investment, Prime remains just $79 a year.

FREE Two-Day Shipping
Instant streaming of movies & TV shows
Kindle Owners’ Lending Library

Millions of people are already members. In fact, we now ship more items with Prime Free Two-Day Shipping than with Free Super Saver Shipping. If you haven’t tried Prime yet, you can start a one-month free trial today. We think it’s the best bargain in the history of shopping, and we hope you do too.

Happy shopping, happy watching, and happy reading,

Jeff Bezos
Founder & CEO
Do computers effectively know you?
Your Amazon.com › Your Browsing History › Recommendations

You do not have any recommendations based on your recently viewed items.

Explore:
- Your Recommendations
- Your New Releases
- Best Sellers
- Movers & Shakers

Your Recent History (What’s this?)
You have no recently viewed items.

After viewing product detail pages or search results, look here to find an easy way to navigate back to pages you are interested in.

Continue Shopping: Recommended for You

- Fundamentals of Database Systems
 - Ramez Elmasri
 - Hardcover
 - 106.39

- Working Minds
 - Gary A. Klein
 - Paperback
 - 17.22

- The Five-Factor Model of Personality
 - Jerry S. Wiggins
 - Hardcover
 - 38.35

Fix this recommendation
How much information do computers know about you?

Do they perceive some subtle information?
How about products?

- How much subtle information does AMAZON know about its **products**?
- How many products does it have in order to match your expectations?
- Are there too much data to analyze and make a good recommendation ???
YES....

OVERLOAD....

mardi 11 septembre 12
Now, Affective Computing comes!!

in order to improve recommendations, it might treat 2 aspects:

- tailoring user needs;
- addressing the cold-start problem;
Affective Computing & Human Decision-Making
AC: what is it about?

- How to recognize/extract emotions;
- how to model emotions;
- how to express emotions;
- how to simulate/feel emotions (robots);
- how induce emotions in humans.

[Picard, 1997]
Why use it?

- improve the human-machine interface;
- optimize/personalize human-computer interaction;
- improve the computer decision-making (based on human metaphor);
metaphorically, think ...

When you feel some emotion in your life, is it related to some other psychological aspect?

what aspect?
Why have psychologists been studying so many psychological aspects including emotion and Affective Computing scientists so few?
...such as Personality;

Unfortunately, Affective Computing scientists started to study personality much later than emotions;

for instance, Lisetti [2002], describes how important personality is ...
PERSONALITY
Duration: lifetime
Focality: global
Trait: ambitious/prudent/spendthrift/vindictive/.../playboy/self-centered
Interactive strategy: Tit for Tat/cheat/.../fair

NEGATIVE AFFECT
Duration:
Focality:
Valence: negative
Intensity:

MOOD
Duration: days
Focality: global
Valence: negative
Intensity:
melancholy irritable

EMOTION
Duration: minutes
Focality: event/object
Valence: negative
Intensity:
Facial Expression: happy/sad/.../neutral
Agency: self/other/none
Control: yes/no
Certainty: probability dist.
Comparison: match/mismatch
Action tendency: avoid/approach/.../interrupt

discouragement frustration

POSITIVE AFFECT
Duration:
Focality:
Valence: positive
Intensity:

MOOD
Duration: days
Focality: global
Valence: positive
Intensity:

EMOTION
Duration: minutes
Focality: event/object
Valence: positive
Intensity:
Facial Expression: happy/sad/.../neutral
Agency: self/other/none
Control: yes/no
Certainty: probability dist.
Comparison: match/mismatch
Action tendency: avoid/approach/.../interrupt

optimistic cheery

FEELING = EXPERIENCE OF EMOTION

satisfaction happiness

[Lisetti, 2002]
Imagine a shopping scenario

- at a real (physical-offline) shopping center in town:
 - human decision-making;
- at a virtual shop (online)- such as Amazon:
 - computer decision-making;
- How would a vendor personalize and recommend products for you?
Do computers use this type of information?
Coming back to the Recsys slogan...

Studies have demonstrated how important psychological aspects of people, such as Personality Traits and Emotions, are during the human decision-making process [Damasio, 1994; Simon, 1983; Picard, 1997; Trapp et al, 2003 and Thagard, 2006].
Is recommender systems, implemented in computers, something new?

and, if it uses psychological aspects, such as personality, then, is it new?

why couldn’t we implement in computers a metaphor of the human decision-making process in order to improve personalization, investing in returning clients?
Emotion & Personality
Emotion

- instantaneous;
- short life-time;
- changes constantly;
- dependent on events in the environment;
Personality

more stable;

in adulthood, remains stable over a 45-year period;
Emotions

- easy measurable in humans;
- physiological information;
- intrusive methods;
- modeled in computers to improve the user-computer interaction;
Personality

- hard to extract in a short interaction;
- hard to extract from the user intentionally;
- personality implies Emotions;
Emotion can indicate the user’s psychological state (mood) at a given moment ...

However, it does not give an indication of what kind of product the user might be interested in.
Personality Theory
does not have a common definition:

Funder [2001]:

- human thinking patterns +
- emotions +
- behaviors +
- others psychological mechanisms.
Many approaches [Funder, 2001]:

- trait approach;
- biological approach;
- psychoanalytic approach;
- phenomenological-humanistic approach;
- behavioral approach;
- and cognitive approach.
Trait approach

- differentiates people psychologically by using conceptualized and measurable traits;
- Traits is a formal way to implement personality in computers;
- more used by computer scientists;
Allport 1921 = 17,953 traits [Allport, 1921];

Cattel proposes 4,500 traits;

Later, reduced 99% by orthogonal methods, concluding that only 5 factors were replicable [Goldberg, 1990]:

the formal beginning of the Big Five [John and Strivastava, 1999].
The Big Five factors/dimensions

- Extraversion;
- Agreeableness;
- Conscientiousness;
- Open to experience;
- Neuroticism.
<table>
<thead>
<tr>
<th>Big Five Factors</th>
<th>Facet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraversion</td>
<td>Warmth</td>
</tr>
<tr>
<td></td>
<td>Gregariousness</td>
</tr>
<tr>
<td></td>
<td>Assertiveness</td>
</tr>
<tr>
<td></td>
<td>Activity</td>
</tr>
<tr>
<td></td>
<td>Excitement-Seeking</td>
</tr>
<tr>
<td></td>
<td>Positive Emotions</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>Trust</td>
</tr>
<tr>
<td></td>
<td>Straightforwardness</td>
</tr>
<tr>
<td></td>
<td>Altruism</td>
</tr>
<tr>
<td></td>
<td>Compliance</td>
</tr>
<tr>
<td></td>
<td>Modesty</td>
</tr>
<tr>
<td></td>
<td>Tender-Mindedness</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>Competence</td>
</tr>
<tr>
<td></td>
<td>Order</td>
</tr>
<tr>
<td></td>
<td>Dutifulness</td>
</tr>
<tr>
<td></td>
<td>Achievement Striving</td>
</tr>
<tr>
<td></td>
<td>Self-Discipline</td>
</tr>
<tr>
<td></td>
<td>Deliberation</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>Anxiety</td>
</tr>
<tr>
<td></td>
<td>Angry Hostility</td>
</tr>
<tr>
<td></td>
<td>Depression</td>
</tr>
<tr>
<td></td>
<td>Self-Consciousness</td>
</tr>
<tr>
<td></td>
<td>Impulsiveness</td>
</tr>
<tr>
<td></td>
<td>Vulnerability</td>
</tr>
<tr>
<td>Openness to Experience</td>
<td>Fantasy</td>
</tr>
<tr>
<td></td>
<td>Aesthetics</td>
</tr>
<tr>
<td></td>
<td>Feelings</td>
</tr>
<tr>
<td></td>
<td>Actions</td>
</tr>
<tr>
<td></td>
<td>Ideas</td>
</tr>
<tr>
<td></td>
<td>Values</td>
</tr>
</tbody>
</table>
• personality might predict emotion:
• look at:

 Extraverts:

 * Friendliness. Friendly people genuinely like other people and openly demonstrate positive feelings toward others. They make friends quickly and it is easy for them to form close, intimate relationships. Low scorers on Friendliness are not necessarily cold and hostile, but they do not reach out to others and are perceived as distant and reserved. Your level of friendliness is average.

 * Gregariousness. Gregarious people find the company of others pleasantly stimulating and rewarding. They enjoy the excitement of crowds. Low scorers tend to feel overwhelmed by, and therefore actively avoid, large crowds. They do not necessarily dislike being with people sometimes, but their need for privacy and time to themselves is much greater than for individuals who score high on this scale. Your level of gregariousness is high.

• but «context-aware» [Ricci, 2012];
Computational Personality Acquisition methods

Explicit methods:
- test-based (questionnaire-based);
- story-based;

Implicit methods:
- text-based;
- keyboard-based;
- kinect-based;
Personality: test-based

- computer narrative:
 - set of traits;
 - differentiates someone from another;
- many inventories are based on the Big Five:
• 240-items NEO-PI-R (Revised NEO Personality Inventory) \([\text{Costa and MCrae, 1992}]\);

• 300-items NEO-IPIP (International Personality Item Pool, Neuroticism-Extroversion-Openness Personality Inventory) \([\text{Johnson, 2000; Johnson, 2005}]. \text{IPIP Consortium [Goldberg, 1999]}\);

• 5 Big Five factors + 30 facets;

•

• 10-items TIPI (Ten-Item Personality Inventory) \([\text{Gosling et al, 2003}]\);

• 5 Big Five factors;

 psychometric quality different from the bigger one;
NEO-IPIP and TIPI - Universidade Federal de Sergipe’s Version

Old web version:
• new Mobile based version
Personality: story-based

• stories that represent the Big Five traits (polarized model: high & low);

• based on 20 item from IPIP;

• [Dennis et al, 2012] partly satisfied with the results;
Openness to Experiences (V)

High

Oliver believes in the importance of art and has a vivid imagination. He tends to vote for liberal political candidates. He enjoys hearing new ideas and thinking about things. He enjoys wild flights of fantasy, getting excited by new ideas.

• http://homepages.abdn.ac.uk/m.dennis/pages/w/?page_id=231
• We are working on transforming the NEO-IPIP and TIPI into a «story» (such as we did in the «comic book»)
Personality: text-based

• Psychologists said that language can be used as a psychological marker [Pennebaker et al, 2002];

• then, Mairesse et al [2007] developed the Personality Recognizer that extracts information from the way people use words (personality cues);
• How did Mairesse develop his experiment?

• collects individual corpora;

• extracts relevant features from texts based on LIWC (a Dictionary-based identification, created for the Linguistic Inquiry and Word Count-LIWC- program and Medical Research Council (MRC) Psycholinguistic database dictionary);

• collects associated personality ratings (based on NEO-PI-R- Big Five factors);
• builds statistical models of personality ratings;
• uses regression algorithms to estimate the scores of Big Five Personality Traits
• Minamikawa and Yokoyama [2011]:
 • create a tool to extract personality from Japanese blogs in order to recommend groups:
 • use Multinomial Naïve Bayes;
 • use an Egogram (integrative approach from psychology and psychotherapy (psychoanalytic, humanist and cognitive approaches));
• *Nunes et al at UFS:*

 • we are doing a portuguese version of Personality Recognizer:

 • LIWC, WordNet (not good in portuguese);

 • Onto.PT (http://ontopt.dei.uc.pt/)
Personality: keyboard-based

- Gosling [2008] said that individuals consciously and unconsciously leave traces of their individuality in the spaces around them;

- Why not by keyboard typing?

- Montalvão and Freire [2006] said that each person has his own typing pattern;
• **Porto and Costa [2011]** developed an experiment to recognize human personality by using typing patterns:

 • extract the user’s typing rhythm (KeyPress, «hold time», keyDown, keyUp)

 • collect associated personality ratings from NEO-IPIP;

 • apply a clustering technique to match the typing rhythm and personality;
• We did 5 experiments:
 • from 282 to 85 participants;
 • we find some correlation in 10 facets;
 • more results to be published;
Personality Profile representation and standardization
How do we represent and store the Personality extracted before?

Identity from the real world is stored in virtual world as an User profile;

However, can the traditional “Profile” store the psychological aspects, such as personality?
yes !!!

GUMO Ontology - [Heckmann, 2005];

- Basic User Dimensions
 - Contact Information
 - Demographics
 - Ability And Proficiency
 - Personality
 - Characteristics
 - Emotional State
 - Physiological State
 - Mental State
 - Motion
 - Role
 - Nutrition
 - Facial Expression
GUMO (Generic User Model)-2005. Unfortunately, people do not effectively use it;

UPP - User Psychological Profile-2007:
used in Recommender Systems [Nunes, 2008];

how about the standardization?
PersonalityML

\[? \text{ comes to standardize the representation of Personality;} \]
\[? \text{ XML based;} \]
\[? \text{ recommender inputs;} \]
\[? \text{ ...} \]
available at www.personalityresearch.com.br

Personality ML Structure;
xsd;
“comic book”.
Personality-based Recommender Systems

Rong Hu
HCI Group, EPFL
Contact: rong.hu@epfl.ch
Outline

• Personality-based recommender technologies and systems
• User perception issues
• Conclusions
• Future research and application directions
Motivation

Personality

- Human Behaviors
- Human Decision Making
- Interests
• How to use personality in **recommender Systems**?

• How about **user experience**?
PBRS Technologies

- Personality Acquisition
- User Modeling
- Recommendation Generation
- User Perception
PBRS Technologies

- Personality Acquisition
- User Modeling
- Recommendation Generation
- User Perception
PBRS Technologies

- Personality Acquisition
- User Modeling
- Recommendation Generation
- User Perception
Personality in social matching system
PB Social Matching System
PB Social Matching System
PB Social Matching System
The psychological literature indicates there is a strong relationship between personality similarity and attraction.

People prefer to interact with others who have similar Personality.

[Nass and Lee, 2000; Reeves and Nass, 1996]
PB Social Matching System

[Image of a diagram showing the system's flow: NEO-IPIP Questionnaire, User's answers, Data Base, Normalization Function, User Personality Traits (PT) - facets + dimensions, Distance Function, User's difference in PT, Ranking Function, User's ranked, Decision Module, User's recommended, Similarity Function, Final recommendation]

[Nunes, 2008]
Recommending President

• Recommending a “French Presidential candidate” based on psychological reputation of presidential candidates (December 2006 - July 2007, covering the Elections for President in France)

Ségolène Royal

Nicolas Sarkozy
Table 4.1: Results of experiment 1

<table>
<thead>
<tr>
<th>Participants</th>
<th>Real Vote</th>
<th>First Recommendation: based on 30 facets</th>
<th>Second Recommendation: based on Big Five</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 User 46</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
</tr>
<tr>
<td>2 User 173</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
</tr>
<tr>
<td>3 User 174</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
</tr>
<tr>
<td>4 User 172</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
</tr>
<tr>
<td>5 User 166</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
</tr>
<tr>
<td>6 User 154</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
</tr>
<tr>
<td>7 User 180</td>
<td>Nicolas Sarkozy</td>
<td>Nicolas Sarkozy</td>
<td>Nicolas Sarkozy</td>
</tr>
<tr>
<td>8 User 168</td>
<td>Nicolas Sarkozy</td>
<td>Nicolas Sarkozy</td>
<td>Nicolas Sarkozy</td>
</tr>
<tr>
<td>9 User 171</td>
<td>Ségolène Royal</td>
<td>Ségolène Royal</td>
<td>Nicolas Sarkozy</td>
</tr>
<tr>
<td>10 User 49</td>
<td>Nicolas Sarkozy</td>
<td>Nicolas Sarkozy</td>
<td>Ségolène Royal</td>
</tr>
</tbody>
</table>
Personality in content-based information filtering systems
Temperament-based Filtering

[Lin and McLeod, 2002]
Temperament-based Filtering

[Lin and McLeod, 2002]
Temperament-based Filtering

[Lin and McLeod, 2002]
Temperament-based Filtering

[林 and McLeod, 2002]
Temperament-based Filtering

1. Segment information into subspaces based on temperaments

2. To reduce the size of comparisons when searching within a segment, segments are clustered by content-based approach.

3. Infer the target segment and cluster

\[
(S_{\text{target}}, C_{\text{target}}) = \arg \max_{s \in S, c \in C} \text{Pop}(V_c, V_k) \\
\text{Pop}(V_c, V_k) = e_c \text{Sim}(V_c, V_k)
\]
Temperament-based Filtering

- More than 85% of the user population would be better satisfied.

Segments of a sample information space
Temperament-based Filtering

- More than 85% of the user population would be better satisfied.
- Address the new user problem

Segments of a sample information space
Personality in collaborative filtering systems
Personality-based CF

- Rating-based Similarity

- Neighborhood Formation (e.g., Pearson Correlation)

$$simr(u, v) = \frac{\sum_{i \in I_u \cap I_v} (r_{u,i} - \bar{r}_u)(r_{v,i} - \bar{r}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (r_{u,i} - \bar{r}_u)^2(r_{v,i} - \bar{r}_v)^2}}$$

- Rating Prediction

$$\tilde{r}_{u,i} = \bar{r}_u + \kappa \sum_{v \in \Omega_u} simr(u, v)(r_{v,i} - \bar{r}_v)$$
Personality-based CF

Is it possible to use human personality characteristics to alleviate the cold-start problem in CF?
Personality-based CF

- Personality-based CF
- Personality characteristics are used to calculate the similarity of users

\[
simp(u, v) = \frac{\sum_k (p^k_u - \bar{p}_u)(p^k_v - \bar{p}_v)}{\sqrt{\sum_k (p^k_u - \bar{p}_u)^2 \sum_k (p^k_v - \bar{p}_v)^2}}
\]

- Linear Hybrid CF

\[
sim(u, v) = \alpha \cdot simr(u, v) + (1-\alpha) \cdot simp(u, v)
\]

[Rong and Pu, 2011]
Personality-based CF

- Cascade Hybrid CF

\[
\begin{align*}
 r_{u,i}' &= \begin{cases}
 r_{u,i} & \text{if rating for item } i \text{ has been provided by user } u \\
 \bar{r}_{u,i} & \text{otherwise}
 \end{cases} \\
 \bar{r}_{u,i} &= \bar{r}_u + \kappa \sum_{v \in \Omega_u} \text{simp}(u,v)(r_{v,i} - \bar{r}_v)
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>user 1</th>
<th>user 2</th>
<th>user 3</th>
<th>user 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>item 1</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>item 2</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>item 3</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>item 4</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Personality-based CF

- Cascade Hybrid CF

\[
\begin{align*}
\tilde{r}_{u,i} &= \tilde{r}_u + \kappa \sum_{v \in \Omega_u} \text{sim}_p(u, v)(r_{v,i} - \tilde{r}_v) \\
r'_{u,i} &= \begin{cases}
 r_{u,i} & \text{if rating for item } i \text{ has been provided by user } u \\
 \tilde{r}_{u,i} & \text{otherwise}
 \end{cases}
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>user 1</th>
<th>user 2</th>
<th>user 3</th>
<th>user 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>item 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>item 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>item 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>item 4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Results

Prediction performances in the scenario of *new user*

(RB: rating based CF, PB: personality based CF, RPBL: rating-personality based linear hybrid approach, RPBC-5: rating-personality based cascade hybrid approach with $\beta = 5$)
Results

Prediction performances in the scenario of sparse dataset

(RB: rating based CF, PB: personality based CF, RPBL: rating-personality based linear hybrid approach, RPBC-5: rating-personality based cascade hybrid approach with $\beta = 5$)
New User Problem Period (CSP)

p values of the t-test of the comparison of the personality based USM and rating based USM.

[Tkalčič et al., 2011]
TWIN Recommender

Your personality profile follows the Big Five model widely used in psychological research. The score of each of the five parameters (Openness to experience, Conscientiousness, Extraversion, Agreeableness and Neuroticism) varies from 1 to 7. To see more information point the mouse over the particular trait.

Conscientiousness

Openness to experience

Extraversion

Neuroticism

Agreeableness

[101]

[Roshchina et al., 2011]
TWIN Recommender

TWIN system

User → data → Reviews Processor

Personality Recognizer → Profile creator → Similarity estimator

Results Visualizer

List of recommendations

LIWC
MRC
DataBase
GUMO ontology
TWIN Recommender

![TWIN System Diagram]

- User
- Data
- Reviews Processor
 - Personality Recognizer
 - Profile Creator
- Similarity Estimator
- Results Visualizer
- List of Recommendations
- Data Base
- LIWC
- MRC
- GUMO ontology
TWIN Recommender

Diagram of the TWIN system showing:
- User
- Data
- Reviews Processor
 - Personality Recognizer
 - Profile creator
- Similarity estimator
- Results Visualizer
- List of recommendations
- LIWC
- MRC
- Data Base
- GUMO ontology
Personality in Group Recommenders
Personality Aware Group Recommendations
Personality Aware Group Recommendations

- Accommodating
- Collaborating
- Compromising
- Competing
- Avoiding
- Assertiveness
- Cooperativeness
Personality Aware Group Recommendations

- **Assertive** behaviours penalize the differences with the best choice of another members.
- **Cooperative** behaviours reward the differences with the best choice of another members.

- **Conflict Mode Weight (CMW) = 1 + Assertiveness - Cooperativeness**

[Recio-Garcia et al., 2010]
90% of groups with more accurate recommendations have at least a member with a high assertive value. (leader)

Recommender works better for groups with a high dispersion in the CMW value

[Recio-Garcia et al., 2010]
Personality-based Recommender Applications
If the garbage disposal broke, he would...

- Fix it himself
- Call a plumber
- Survive without it
- None of the above
Each partner proposal you receive from PARSHIP is, by comparing the personality dimensions of 30 selected especially for you. The basis for this selection is our scientific personality test.

Therefore please take quiet time 10 to 15 minutes to answer the following questions honestly and spontaneously. Immediately after the personality test you will first partner proposals and a detailed personality report with your test result.

Have fun with these questions!

Regardless of your current place of residence, where you want to live?

- In a big city with big-city feel
- In the environment of a large city
- In a more tranquil town
- Or quite a bit quieter in the country
- Anytime, I can feel in many places...
Each partner proposal you receive from PARSHIP is, by comparing the personality dimensions of 30 selected especially for you. The basis for this selection is our scientific personality test.

Therefore please take quiet time 10 to 15 minutes to answer the following questions honestly and spontaneously. Immediately after the personality test you will first partner proposals and a detailed personality report with your test result.

Have fun with these questions!

Regardless of your current place of residence, where you want to live?

- In a big city with big-city feel
- In the environment of a large city
- In a more tranquil town
- Or quite a bit quieter in the country
- Anytime, I can feel in many places ...
Hello tester_movie!

The following questions will ask about your feelings on certain issues, how you would react in certain situations, and how your body and mind relate to the outside world. Your answers to these questions will provide our server with the information required to adequately model your personality and thus get a good idea of who you are.

The questions use slider-bar technology to provide you with a continuous range over which to answer. Simply grab and slide the bar to the answer that you feel most comfortable with. If you feel somewhere between two answers, slide the bar wherever is most accurate.

Question 1:

Imagine you are selecting dinner at a restaurant you have visited a few times. The restaurant has a broad menu of foods you are not totally familiar with. What is the percentage chance you will try something new even though you may not like it?

100% 75% 50% 25% 0%

Question 2:

Which answer best describes how serious your favorite movies are:

Just Fun! Real-Life Harsh
Real-Life Harsh Super Harsh
More ...
User Perception

User Satisfaction of Personality-based Recommender Systems
Study 1

1. Can personality quiz-based recommendation method be accepted by users?

2. Which aspects of the system would influence user acceptance of personality-based approaches?

[Rong and Pu, 2009]
Study Setup

Welcome tester@gmail.com (Log Out)
You've rated 0 movies.
You're the 31st visitor in the past hour.

So far you have rated 0 movies. MovieLens needs at least 15 ratings from you to generate predictions for you.
Please rate as many movies as you can from the list below.

<table>
<thead>
<tr>
<th>Your Rating</th>
<th>Movie Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>??? Not seen</td>
<td>Sliding Doors (1998) Drama, Romance</td>
</tr>
<tr>
<td>??? Not seen</td>
<td>Scream 2 (1997) Comedy, Horror, Thriller</td>
</tr>
<tr>
<td>??? Not seen</td>
<td>Down Periscope (1996) Comedy</td>
</tr>
<tr>
<td>??? Not seen</td>
<td>Room with a View, A (1986) Comedy, Drama, Romance</td>
</tr>
<tr>
<td>??? Not seen</td>
<td>Young Guns (1988) Action, Comedy, Western</td>
</tr>
<tr>
<td>??? Not seen</td>
<td>Chariots of Fire (1981) Drama</td>
</tr>
<tr>
<td>??? Not seen</td>
<td>Muppet Movie, The (1979) Children, Comedy, Musical</td>
</tr>
<tr>
<td>??? Not seen</td>
<td>Serial Mom (1994) Comedy, Crime, Horror</td>
</tr>
<tr>
<td>??? Not seen</td>
<td>Broadcast News (1987) Comedy, Drama, Romance</td>
</tr>
</tbody>
</table>

To get a new set of movies click the next link.

Hello hcitest!
The following questions will ask about your feelings on certain issues, how you would react in certain situations, and how your body and mind relate to the outside world. Your answers to these questions will provide our server with the information required to adequately model your personality and thus get a good idea of who you are.

The questions use slider-bar technology to provide you with a continuous range over which to answer. Simply grab and slide the bar to the answer that you feel most comfortable with. If you feel somewhere between two answers, slide the bar wherever is most accurate.

Question 1:
Imagine you are selecting dinner at a restaurant you have visited a few times. The restaurant has a broad menu of foods you are not totally familiar with. What is the percentage chance you will try something new even though you may not like it?

100% 75% 50% 25% 0%

Question 2:
Which answer best describes how serious your favorite movies are:

Just Fun! Real-Life Harsh Real-Life Super Harsh
Study Setup

- Evaluation Criteria: Technology Acceptance Model (TAM) [Davis 1889]
Results

- Recommendation Accuracy: not significantly different

![Bar chart showing recommendation accuracy](chart)

- The movies recommended for me matched my interests. (Reversed response)
 - Personality quiz-based: 3.47
 - Rating-based: 3.3
 (p = 0.58)

- I am not satisfied with the movies this system recommended to me.
 - Personality quiz-based: 3.57
 - Rating-based: 3.13
 (p = 0.21)
Results

- **Perceived Ease of Use**

 ![Bar chart showing perceived ease of use](image)

 - I found it easy to give my initial preferences.
 - It required too much effort to rate movies/answer personality quiz.

<table>
<thead>
<tr>
<th></th>
<th>Personality quiz-based</th>
<th>Rating-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>3.83 (p < 0.001)</td>
<td>2.3</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>2.43 (p < 0.001)</td>
<td>3.37</td>
</tr>
</tbody>
</table>

- **Actual Task Completion Time**

 - **Whattorent**: 6.8m vs. **MovieLens**: 18.7m (p < 0.001)
Results

• Intention to Use

![Bar chart showing Intention to purchase, Intention to return, and Intention to introduce this system to friends.

Strongly Agree

Strongly Disagree

Intention to purchase
(p = 0.91)

Intention to return
(p < 0.05)

Intention to introduce this system to friends
(p = 0.052)

- Personality quiz-based
- Rating-based

• Preference: 53% Whattorent vs. 13% MovieLens
Results

• Correlation Analysis

![Correlation Diagram]

* p-value < 0.05
** p-value < 0.01
Study Conclusion

• Ease of use is one dominant merit of the personality-based approach

• Perceived accuracy and ease of use determine users’ acceptance of the personality-based system

• More subjects preferred the personality-based system.

• Problem: Transparency
Study 2

- Investigate the feasibility of using personality quizzes to build user profiles not only for an active user but also his or her friends (i.e., for self vs. for friends)

- Investigate the influence of domain knowledge on user perception of personality-based recommender systems (i.e., domain experts vs. domain novices)

[Rong and Pu, 2010]
Study Setup

- Personality Evaluation
 - TIPI (Ten Item Personality Inventory) [Gosling et al., 2003]

- Participants
 - 80 subjects (32 females) from 17 countries
 - expert users (17), medium users (32), novice users (23)

- User Tasks
 - User personality quiz to find songs for self and one friend
Study Setup

- Evaluation Criteria: ResQue Model [Pu, Chen and Hu, 2011]

Diagram:
- System Quality
 - Qualities of Recommended Items
 - Interaction Adequacy
 - Interface Adequacy
 - Perceived Ease of Use
 - Perceived Usefulness
 - Control/Transparency
- Beliefs
- Attitudes
 - Satisfaction
 - Trust
 - Confidence
- Behavioral Intentions
 - Use the System
 - Purchase
 - Continuance
 - Social Influence
Results

• Self- vs. Friend-Recommendations

Average users’ responses to the subjective measurements
(1: strongly disagree, 5: strongly agree)
Results

- Medium Users vs. Expert Users
- Novice Users vs. Expert Users
Results

- Medium Users vs. Expert Users
- Novice Users vs. Expert Users

Subjective responses in the scenario of finding songs for self
(Expert uses: 17, Medium users: 32, Novice users: 23)
Results

- Medium Users vs. Expert Users
- Novice Users vs. Expert Users

Subjective responses in the scenario of finding songs for self
(Expert uses: 17, Medium users: 32, Novice users: 23)
Study Conclusion

• Users with low level of music domain knowledge gave higher subjective evaluation scores than domain experts

• There is a system-adaptivity requirement

• Problem: Privacy and Control
Conclusions

• Advantages
 • Provide personalized services
 • Enhance the interaction experience between systems and users
 • Address the cold-start problem
 • ...

Conclusions

• Disadvantages
 • Transparency, privacy and control Issues
 • Difficult to acquire users’ personality
 • It is not intuitive to have the relations between personality characteristics and recommended items
 • ...

mardi 11 septembre 12
Future Directions

• Design efficient and pleasant ways to acquire users’ personality information

• Develop methods which automatically mapping personality characteristics and items or item features

• Design friendly user interfaces for PBRS

• Need a lot of work...
Conclusions

• Why scientists stopped publishing in the personality field (I mean, this year)?
• is personality hard to extract?
• is personality hard to formalize and store?
• Is it already standardized? (to be used anywhere as recommender inputs, cookies)?
New research directions

at Universidade Federal de Sergipe:

Geolocated personality-based recommender systems for Brazilian mega events 2014-2016 (Personal-Movie);
Group recommender 3.0 - for mobile;
<personality>

<approach name="Traits">
 <model name="Big-Five">
 <theory author="John A. Jhonson"/>
 <inventory test="NEO-IPIP">
 <factors set="Factors NEO-IPIP checks">
 <factor name="extraversion" score="42">
 <facets set="Facets NEO-IPIP checks">
 <facet name="warmth" score="62"/>
 <facet name="gregariousness" score="44"/>
 <facet name="assertiveness" score="13"/>
 <facet name="activity value" score="46"/>
 <facet name="excitement-seeking" score="60"/>
 <facet name="positive-emotions" score="42"/>
 </facets>
 </factor>
 </factors>
 </inventory>
 </model>
</approach>
</personality>
Personality Recognizer:

- by « comic book » stories;
- by text in Portuguese (text-mining);
- by Typing;
- by Kinect;
Project with Univ. Montpellier II - Lirmm - France:

treating Post-Stroke patients by using Affective computing in order to recommend the better rehabilitation, considering patient motivation;
Thank you very much!

Are there any questions?
References

